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Abstract—Mesh tessellations are indispensable tools for an-
alyzing point data because they transform sparse discrete
samples into dense continuous functions. Meshing the output
of petascale simulations, however, can be as data-intensive
as the simulations themselves and often must be executed
in parallel on the same supercomputers in order to fit in
memory. To date, however, no general-purpose large-scale
parallel tessellation tools exist. We present a prototype method
for computing such a Voronoi tessellation in situ during
cosmological simulations. In principle, similar methods can be
applied to other computational geometry problems such as
Delaunay tetrahedralizations and convex hulls in other science
domains. We demonstrate the utility of our approach as part of
an in situ cosmology tools framework that runs various analysis
tools at selected time steps, saves results to parallel storage,
and includes visualization and further analysis in a widely
used visualization package. In the example highlighted in this
paper, connected components of Voronoi cells are interrogated
to detect and characterize cosmological voids.

Keywords-In situ analysis, computational geometry, Voronoi
tessellation.

I. INTRODUCTION

The analysis of petascale simulations is a data-intensive
process. Many researchers agree that one way to reduce this
data intensity is to integrate more analysis with simulations
during their execution. One such approach, in situ analy-
sis, embeds the analysis directly into the execution of the
simulation. This approach implies not only that the analysis
algorithms need to be parallel but that they must scale to
the same size and efficiency as the simulations. In this
paper, we investigate one such algorithm for particle data:
the computation of a Voronoi mesh tessellation.

Meshes are valuable representations for point data because
they convert a sparse point cloud into a continuous field.
Such a field can be used to interpolate across cells, compute
cell statistics, and identify features. The computation of such
a field is indeed data-intensive and is best performed on
particles while still in the supercomputer’s main memory.

Our contribution is the implementation of a parallel
Voronoi tessellation in a prototype library called tess and
a demonstration of its use in a computational cosmology N-
body simulation running on a high-performance supercom-
puter. A snapshot of the result appears in Figure 1. We show
good parallel performance and efficient strong and weak

scaling when running in situ with the simulation. Tess is also
part of a larger framework of cosmology tools for in situ,
coprocessing, and postprocessing visualization and analysis.
As part of this end-to-end workflow, we also developed a
plugin for a production visualization tool so that our meshes
can be viewed and further analyzed. When applied to finding
cosmological voids, a minimum volume threshold can be
used to partition Voronoi cells into connected components
that correspond to voids of irregular, concave geometries.
Further analysis of these geometries indicate that our cell
distributions agree with underlying physical theory and that
cell statistics can be used to characterize aspects of the
simulation.

While motivated by cosmology, our tessellation algorithm
is general-purpose and is not limited to a particular sci-
entific domain. Other areas that would benefit from our
approach include molecular dynamics, computational chem-
istry, groundwater transport, and materials science.

II. BACKGROUND

Previous literature has shown the utility of tessellations
to identify features in cosmology, although this is the first
time that this technique is being used to analyze results in

Figure 1. Voronoi tessellation of cosmological simulations reveals regions
of irregular low-density voids amid clusters of high-density halos.
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Figure 2. Example of a 2D Voronoi diagram.

situ with a full N-body simulation. One reason may be the
lack of a readily available distributed-memory, large-scale
parallel tessellation library.

A. Feature Identification in Cosmology

Dark matter is thought to account for over 80% of the
matter content of the universe: its existence is inferred from
a number of observations involving the cosmic microwave
background [1], galactic dynamics [2], and gravitational
lensing [3]. Indeed, indirect detections inform us that dark
matter is the backbone of large-scale structure in the uni-
verse, over which the distribution of gas and galaxies is
formed. We can simulate the nonlinear time evolution of
the universe to high precision by using dark matter tracer
particles and then investigate the large-scale structures that
are formed by regions of varying particle density.

Being able to identify features such as halos, voids,
filaments, and walls is an important part of understanding
structure in the universe. Specifically, this additional shape
information allows us to probe beyond the traditional two-
point statistics such as power spectrum and correlation. The
anisotropic distribution of tracer particles implies that a
reconstruction of the density field should ideally be adaptive.
Voronoi and Delaunay methods adapt by adjusting the reso-
lution of the reconstruction in response to the local number
of particles, since each particle is a Voronoi site or Delaunay
vertex. Furthermore, while individual cells are convex, their
tessellation into larger structures can produce arbitrary and
concave regions.

Van de Weygaert and Schaap [4] discuss the advantages of
using tessellation-based methods in cosmology as opposed
to a fixed grid. The ZOBOV void finder [5] begins with
a Delaunay Tessellation Field Estimator (DTFE) [6]. The
Watershed Void Finder [7] attempts to locate voids by using
the DTFE algorithm to first reconstruct the density field and
then connects local minima at some density threshold. The
procedure is analogous to filling a landscape with water, with

the valleys acting as voids and the ridges between valleys
as filaments and walls. Shandarin et al. [8] combine tessel-
lations with multistream techniques to identify Zel’dovich
pancakes for the first time in N-body simulations. Besides
being used for analysis, tessellations can be incorporated
into the N-body calculations themselves: in hydrodynamics
simulations, Springel [9] used a Voronoi tessellation to
convert Lagrangian particle behavior to a moving mesh.

B. Computational Geometry Algorithms

Voronoi or Delaunay tessellations are constructed by
partitioning the space into cells according to the positions of
an input set of points. We focus on the Voronoi tessellation,
but the Delaunay is simply its dual; Voronoi cells contain
input points in their interiors, whereas Delaunay cells have
input points at their vertices.

An example Voronoi diagram containing gray-colored
cells is shown in Figure 2. In 2D, those cells are polygons,
and in 3D they are polyhedra. Each Voronoi cell Vi is
associated with one input point si, called the site of the cell;
sites are the cyan-colored dots in the figure. The site appears
somewhere in the interior of the cell, but not necessarily at
the centroid.

Formally, each Voronoi cell is defined as

Vi =
{

x|d(x,si)< d(x,sj)
}
∀ j 6= i, (1)

where d(x,si) is the distance between points x and si. In
other words, given a set of 3D input sites, each Voronoi cell
is formed by partitioning the 3D space into disjoint, convex
regions that are nearer to a particular site than to all other
sites.

Several high-quality serial implementations exist for com-
puting such tessellations. Quickhull is a serial algorithm for
computing convex hulls, from which Delaunay and Voronoi
meshes are derived. Barber et al. [10] report that it is
robust in the presence of imprecise floating-point inputs and
improves over the performance of earlier algorithms such as
Clarkson’s [11].

CGAL (Computational Geometry Algorithms
Library) [12] is an alternative implementation that
can compute a Voronoi diagram given a set of input sites.
Unlike Quickhull, a direct implementation of a 3D Voronoi
tessellation does not exist; the Delaunay graph must be
computed first, from which the dual is calculated to produce
Voronoi vertices.

Parallel computational geometry algorithms of limited
dimension and concurrency have been researched as well.
Rycroft [13] published and implemented a parallel Voronoi
algorithm for shared-memory threads in the Voro++ library.
Miller and Stout examined parallel algorithms for a convex
hull of 2D points, tuned for various network topologies [14].
Dehne et al. [15] presented a parallel 3D convex hull
algorithm for distributed-memory architectures in O(n logn)
local computation and one communication phase.



III. METHOD

Rather than developing a new parallel algorithm from
the ground up, our approach is to take an existing serial
implementation and parallelize it by combining local compu-
tation with communication. The local computation remains
unchanged from the serial case, and our performance results
will show that the communication is inexpensive. Thus, we
can build on the many years of computational geometry re-
search embodied in existing and mature tools. Furthermore,
we wrapped our solution in a suite of in situ analysis tools
that our team is developing and also coupled the output to a
production visualization tool through a custom plugin. The
entire software organization is shown in Figure 3.

A. Simulation Code

HACC, or Hardware/Hybrid Accelerated Cosmology
Codes, is a simulation framework for computing cosmolog-
ical models on various supercomputing architectures such
as GPUs, Cell Broadband Engines, and multicore CPUs.
It solves the Vlasov-Poisson equation, which evolves the
phase-space distribution function for particles in an expand-
ing universe. The solution method is based on N-body tech-
niques melding three kinds of force solvers: direct particle
summation, tree/multipole expansion, and spectral particle-
mesh. HACC runs were the first scientific simulations to
attain a sustained performance of greater than 10 PFlops on
any architecture [16].

Large simulation sizes are required in order to compute
even a fraction of the observable sky. Hundreds of billions to
trillions of particles are required to track galaxy-scale mass
distributions and to predict observables, for example, the
matter density fluctuation power spectrum, correctly [17].
The spatial dynamic range set by the resolution requirements
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Figure 3. Overall software organization.
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Figure 4. The cosmology in situ analysis framework provides the ability
to apply various in situ analyses at selected time steps in the simulation.
Analysis filters include halo finding, multistream feature classification,
feature tracking, and Voronoi tessellation. The framework also connects
to run-time or postprocessing visualization tools.

is 106 : 1. Such simulations can easily generate data sizes
over 100 terabytes to several petabytes in a single run.

B. In Situ Analysis Framework

Our team is developing an entire suite of in situ analysis
tools for cosmology applications, and tess is the first tool
to be implemented in this framework. The overall structure
of this framework is shown in Figure 4. Other tools that
either exist already or are currently being developed include
halo finders [18], feature classifiers, and feature trackers. We
will be incorporating these tools under the same common
analysis interface. Various tools will be turned on through
the configuration file for the simulation, and the frequency
of their execution will also be configurable. Upon each
time step, the input particles will be sent to the appropriate
analysis tools.

Output from the analysis will be available either at run
time or for postprocessing. In the former case, a ParaView
server can be launched and connected to the simulation
through a tool called Catalyst. In the latter case, results of
the in situ analysis are written to a parallel file system and
later retrieved. This is the mode that we used in this paper.

C. Parallel Voronoi Tessellation

In general, our preferred approach to developing high-
performance analysis solutions is to parallelize existing
algorithms through a combination of serial operations and
parallel communication. In this way, we can select a proven
implementation of the serial algorithm and parallelize it over
a data-parallel infrastructure that we wrote and maintain.

The result, tess, consists of the following main features.
• Standalone and in situ modes of operation
• Neighborhood particle ghost zone exchange
• Local Voronoi cell computation
• Identification of complete cells
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Figure 5. Overview of parallel algorithm by using an example with four processes. Particles and Voronoi cells are colored according to the process where
they originated prior to exchanging ghost layer. Gray-colored cells are exchanged by multiple processes.

• Early volume threshold culling
• Local convex hull computation for faces, areas, volumes
• Parallel writing Voronoi cells to storage

We selected the Quickhull algorithm for the local com-
putation because of its widespread use, documented per-
formance, and numerical stability. This algorithm is im-
plemented in an open-source package, Qhull,1 a set of
standalone command-line programs for computing convex
hulls, Delaunay triangulations, and Voronoi tessellations.
These programs call an underlying libqhull library. The
standalone programs are well-documented, but the library
API is not. By examining its printing routines, however, we
were able to parse Qhull’s data structure and redirect its
output to our data model. No changes were made to Qhull
itself.

For data parallelism, we took advantage of the features

1http://www.qhull.org

available in a library called DIY [19] that provides config-
urable data partitioning, scalable data exchange, and efficient
parallel I/O. DIY is initialized with information from HACC
about its block decomposition and neighborhood connectiv-
ity. Then, DIY performs data movement and communication
on behalf of tess. Developing tess required two new features
to be added to DIY: periodic boundary conditions and
destination neighbor identification based on proximity to a
target point (see Section III-C1).

The steps in our algorithm are illustrated in Figure 5.
The first step is to exchange particles in a given size ghost
region. Details of the neighborhood exchange are explained
in Section III-C1. We rely on an estimate of the average cell
size and a block size that is several times larger than that.
In HACC, the average cell size is on the order of the initial
particle spacing, and block size is approximately ten times
that distance.

The local Voronoi tessellation is then computed by using
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Figure 6. Neighborhood communication with periodic boundary conditions
and neighbors that are near enough to a target point. Green blocks denote
sources, and red blocks denote destinations. Particle A is at the domain
boundary and is sent to the virtual neighbors marked with dashed lines
actually on the other side of the domain. The coordinates of the particle
are transformed accordingly. Particle B is sent to actual neighbors near
enough to receive it.

the Quickhull algorithm. The Voronoi cells are each exam-
ined to see whether they should be removed. Incomplete
cells are eliminated; these cells are not closed because they
lack particles surrounding them on all sides.

The neighborhood exchange is bidirectional. This ensures
that all local blocks have an adequate ghost region of
particles needed to compute correct and complete Voronoi
cells in their interior. A bidirectional exchange, however,
results in duplicated cells across blocks. These are apparent
in the upper right quadrant of Figure 5. In order to resolve
such duplication, each process keeps the cells that have sites
in its original particle set and deletes the cells owned by
other processes.

As Section IV shows, a large fraction of cells have small
volume and may be of little interest, especially for void find-
ing. These will be eliminated once their volume is accurately
computed, but we perform a conservative quick estimate of
the cell volume and eliminate early as many cells as possible
by keeping only those cells whose distance between any two
vertices exceeds the diameter of a circumscribing sphere of
the threshold volume.

We then compute the convex hull of the vertices in the
Voronoi cell. Although Voronoi vertices are convex by defi-
nition, this step orders the vertices into faces and computes
the volume and surface area of the cell. Afterwards, we
recheck the volume and further cull cells below the volume
threshold, writing the remaining data in parallel to storage
according to the data model in Section III-C2.

1) Neighborhood Particle Exchange: Two new commu-
nication patterns were added to DIY as a result of this
research: periodic boundary neighbors and targeted particle
exchange. HACC’s nearest-neighbor connectivity includes
periodic boundaries, meaning that blocks at one edge of
the overall domain have neighbors at the opposite edge of
the domain. Targeted particle exchange refers to the fact
that only those neighbors in the ghost zone distance from

Figure 7. The cosmology tools plugin for ParaView provides interactive
feature exploration of previously computed Voronoi tessellations. It includes
a parallel reader, threshold filtering, connected component labeling, and
computing Minkowski functionals.

a particle will be destined to receive the particle during the
exchange.

These ideas are diagrammed in Figure 6. Particles orig-
inate in the green blocks and follow the indicated paths to
the red blocks. Particles in the ghost zone distance of a
block boundary are exchanged with all neighbors, including
periodic boundary neighbors, that share that boundary. If
the neighbor is indeed a periodic boundary neighbor, the
particle is translated in each of the periodic dimensions to
the other side of the domain. Identifying which destinations
are periodic and providing a callback to a user-specified
transformation for those destinations were two details that
were added to DIY as part of this work.

2) Analysis Data Model: In tess, each process maintains
a data structure for the block of Voronoi cells local to it;
these blocks are written in parallel to a single file by the
DIY library. Each block contains a conventional unstructured
mesh data model. Vertices are listed once, and integer
indices connect vertices into faces and cells. Original particle
locations are also saved, along with cell volumes, areas, and
block extents.

On average, Voronoi cells in HACC simulations contain
15 faces per cell and 5 vertices per face. Each cell consists



Table I
PARALLEL ACCURACY

Ghost
Size

Cells in Serial
Version Blocks

Matching
Cells

%
Accuracy

0 210181 2 201952 96.08
4 196803 93.64
8 192140 91.42

1 2 209367 99.61
4 208564 99.23
8 207024 98.50

2 2 210176 99.99
4 210155 99.98
8 210012 99.92

3 2 210181 100.00
4 210180 99.99
8 210180 99.99

4 2 210181 100.00
4 210181 100.00
8 210181 100.00

of approximately 35 total vertices, since vertices are shared
between at least two faces in the same cell. Vertices are also
shared among five cells on average; hence, approximately
seven new Voronoi vertices are added for each new cell in
a full tessellation.

The total data size of a full tessellation is approximately
450 bytes per particle. As we show in Section IV, a large
fraction of cells have insignificant volume with respect to
voids. When we choose to eliminate these, as we often do,
the data size is reduced to approximately 100 bytes per
particle. By comparison, a HACC checkpoint that saves only
particle data uses 40 bytes per particle.

Of tess’s total output size, approximately 7% is used to
store floating-point geometry of vertices, particles, volumes,
and areas. The remaining 93% is used for connectivity of the
mesh. A more efficient data structure for general polyhedral
grids has been published by Muigg et al. [20], and we are
investigating its use.

D. Postprocessing Tools

The visualization and subsequent analysis of our tessel-
lation are performed in postprocessing with the help of a
plugin that we developed for ParaView. Figure 7 shows a
snapshot of the tool, which provides four main functions:
parallel reading the tess output file, threshold filtering,
parallel connected component labeling, and computing of
Minkowski functionals on the connected components.

The Minkowski functionals are a set of statistics recog-
nized by cosmologists for classifying structures [21]. The
four basic functionals are volume, surface area, extrinsic
curvature, and genus. From these basic quantities, three more
derived metrics are computed: thickness, breadth, and length.
Figure 7 shows the Minkowski filter in use, and the values
of these metrics are shown for the connected components in
the lower right portion of the figure. Such metrics are used to
compare different simulations or different initial conditions,
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Figure 8. Histogram of cell volume distribution in small-scale test.

to study percolation theory, and to characterize the shapes
of large-scale structures such as cosmological voids.

IV. RESULTS

Our small-scale tests were run on a Linux desktop
workstation with a quad-core Intel i7 processor capable
of running eight hardware threads with 12 GB of RAM.
Our full-scale tests were run on Intrepid, a 557-teraflop
IBM Blue Gene/P (BG/P) supercomputer operated by the
Argonne Leadership Computing Facility (ALCF) at Argonne
National Laboratory. Tests were run in symmetric multi-
processor mode (one MPI process per node) to maximize
available memory per process; HACC and tess are memory-
size bound. The libraries and simulation were all com-
piled with the IBM xlcxx_r compiler and by using -O3
-qarch=450d -qtune=450 optimizations.

In our HACC configuration, we varied the number of
particles from 323 to 10243. The particles are initialized on a
grid of the same number of grid points (ng) per dimension as
number of particles (np). The physical size of the simulation
box is also the same as ng and np; hence, particles begin
spaced 1 Mpc/h apart in each dimension, where h is the
dimensionless Hubble parameter.

A. Parallel Accuracy Study

Our first test compared the accuracy of our parallel
algorithm with a serial version. Table I shows the accuracy of
the parallel version with particles distributed among multiple
blocks compared with a serial version with all particles in
one block. In this test, 643 particles were computed for
100 time steps of the HACC simulation. In our parallel
tessellation algorithm, we varied the ghost zone size that
was being exchanged, where this distance is measured in the
same units of distance as the simulation. The table shows



Figure 9. Culling cells below a minimum volume threshold reveals connected components of cells, which constitute voids. Left to right: original cells
ranging from 0.0001 to 2.005 (Mpc/h)3, and progressing through minimum volume thresholds of 0.0, 0.5, 0.75, and 1.0 (Mpc/h)3, respectively.

that until the ghost zone is large enough, accuracy decreases
with increasing block count. The reason is that the incorrect
cells occur at block boundaries, and more blocks produce
more errors. Without any ghost zone exchange (ghost size
0), eight blocks alone reduce accuracy to 91%.

As the ghost zone size increases, however, the overall
accuracy improves, until it reaches 100% when the ghost
zone is sufficient. This is the case at a ghost size of 4
units in this example. The ghost size parameter is provided
by the user. This approach is acceptable because cosmol-
ogists have a good understanding of the largest spacing
between particles through experience and smaller scale runs.
Nonetheless, we are studying methods to determine the ghost
size automatically in order to make the algorithm more
robust and easier to use. Moreover, we are investigating the
tradeoff between ghost zone size, neighborhood exchange
time, and accuracy. For example, it may be desirable to
exchange fewer particles with a smaller ghost zone if the
reduction in accuracy is insignificant.

B. Characteristic Volume Distribution and Threshold

Our second test consisted of a 323 particle simulation run
on a Linux workstation up to 32 processes. Particles were
evolved for 100 time steps, and the Voronoi tessellation
was computed at the end of the last time step. Several
characteristics of the Voronoi tessellation applicable to larger
scale were uncovered at this small scale.

The distribution of Voronoi cell volume after 100 time
steps appears in Figure 8. The distribution is skewed toward
zero, with the majority of cells at the left side and a long
thin tail at the right. In fact, 75% of the cells are in the
smallest 10% of the volume range.

This characteristic distribution holds in all our larger-
scale runs and indicates that a simple threshold operator can
dramatically reduce the number of cells. Shandarin et al.
also describe voids in terms of thresholds [22]. Voids by
definition are regions of low particle density found in the
long tail at the right of the histogram. When studying voids,
we found that a 10% volume threshold is a reasonable value

that eliminates many small, uninteresting cells while safely
retaining all the cells that contribute to voids.

Thresholding serves a second purpose besides reducing
output size. We can further filter cells during either com-
putation or rendering to reveal voids more clearly. Figure
9 shows a sequence of progressive thresholding during ren-
dering. From left to right, culling cells below an increasing
volume threshold reveals connected components of cells that
correspond to voids.

In the left image, the difference in cell size is visible,
but the connection of cells into larger structures is not. The
other images reveal a small number (approximately 7-10)
distinct connected components, or voids. We are able to
select the volume threshold range either in situ or during
postprocessing as explained in III-D. In the latter case, we
can generate logical connectivity and connected component
labeling. In the former case, the connectivity is purely visual;
but in the future, we plan to label connected components
automatically in situ as well.

C. Performance and Scalability

Full timing results for a range of problem and system sizes
appear in Table II, which shows the performance running
one Voronoi tessellation in situ after running a number of
simulation time steps on BG/P. The fourth column of the
table is the total time, which is the sum of the simulation
time in column five and the tessellation time in column
six. The tessellation time is further itemized in columns
seven through nine into particle exchange time, Voronoi
computation time, and output time. This test was run with
culling the smallest 10% volume range of the Voronoi cells,
resulting in the file sizes shown in the last column.

The tessellation time is 1-10% of the total run time, de-
pending on the number of time steps executed before calling
tess. The cost of tessellation compared with simulation is
reasonable, especially considering that HACC takes longer
to compute later time steps. The particle exchange time
is negligible; this is a testament to the efficiency of the
neighborhood exchange algorithm in DIY. The output time
is also minimal, although the I/O performance begins to



Table II
PERFORMANCE DATA

No. of
Particles

Time
Steps Processes

Total Time
(s)

Simulation
Time (s)

Tessellation
Total Time
(s)

Particle
Exchange
Time (s)

Voronoi
Computation
Time (s)

Output
Time (s)

Output
Size (GB)

1283 100 128 1862 1809 53 1 50 2 0.3
256 1354 1322 32 1 29 2
512 1116 1096 20 1 17 2
1024 745 729 16 1 12 3

2563 100 512 3090 3016 74 2 69 3 1.7
1024 2391 2346 45 2 39 4
2048 1861 1830 32 2 26 4
4096 1334 1305 29 2 15 12

5123 50 2048 3852 3684 167 4 157 6 14
4096 2008 1918 89 3 77 9
8192 1784 1722 62 3 48 11
16384 1406 1344 61 2 32 27

10243 25 8192 2331 2119 212 6 186 20 101
16384 1446 1289 157 4 113 40
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Figure 10. Strong scaling (left) and weak scaling (right) are plotted on a log-log scale. Weak scaling time is normalized by the number of particles,
resulting in a downward path whose slope can be compared with the ideal. All graphs represent the total tessellation time, including the time to write the
result to storage. The strong scaling efficiency is 41%, and the weak scaling efficiency is 86%.

wane at larger problem sizes and higher process counts.
We continue to work to improve our I/O algorithm. The
most expensive component of the tessellation is the serial
Voronoi computation, although this component scales well
with increasing process count. Such scalability is typical of
the serial component of parallel analysis algorithms.

Strong and weak scaling curves are plotted on a log-
log scale in Figure 10. These graphs represent the total
tessellation time, including writing the results to storage.
Strong scaling is shown for each of the four problem sizes.
Weak scaling is normalized by the number of particles,
so that the curve slopes linearly downward. Strong scaling
efficiency for tess is 30-40%, and weak scaling efficiency is
86%. As column five of Table II shows, these efficiencies
are consistent with the scalability of the original simulation.

D. Time-Varying Void Evolution

Since tess can generate tessellations at any number of
time steps in the simulation, we can study the evolution of
voids over time. We tested the time-varying capability by
producing outputs at every ten time steps of a simulation
with 100 time steps. This test was at small scale, on 323

particles on our workstation; the results are shown in Figure
11. The top row shows images of the tessellation at time
steps 11, 21, and 31, while the bottom row shows the cell
density contrast δ . All particles have unit mass; hence, cell
density d is simply the reciprocal of cell volume. Density
contrast δ is the difference between d and the mean density
µd normalized by µd , and much of the cosmology theory is
developed in terms of δ .

δ = (d−µd)/µd (2)



Histogram of Cell Density Contrast at t =  11
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Histogram of Cell Density Contrast at t =  31
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Figure 11. Evolving Voronoi cells at three time steps during the simulation (top) and corresponding density contrast distribution (bottom).

The early time steps begin with a normally distributed
cell size and shape because particles begin their evolution
randomly displaced from regular grid points. As time pro-
gresses, the range of δ expands. The kurtosis increases
as the distributions become more pointed, and skewness
increases as well. The images in the top row confirm this
behavior. These statistics correspond to the breakdown of
perturbation theory governing the physics; in the future, we
will investigate whether such summary statistics can be used
as simple indicators of such changes in physical behavior.
For example, as particles coalesce into high-density halos,
the quantity of small cells increases; at the same time, large
cells that are diminishing in number are increasing in size.

V. SUMMARY

We presented a solution for computing scalable parallel
tessellations and demonstrated its in situ application to
cosmological computations. This produced statistical sum-
maries of volume and density distributions and identification
of large-scale structures such as voids. Performance was
benchmarked with good scalability, and our time-varying
results were consistent with published findings.

We showed how our approach is part of a growing set
of in situ cosmology analysis tools and how the results are
postprocessed to investigate void statistics. This has been
proposed as a means of distinguishing between competing
cosmological models but has never been verified with a full
nonlinear N-body solution.

It would also be interesting to perform these reconstruc-
tions with halos as Voronoi sites instead of directly by
using the tracer particles, since halos can be matched to
direct observables such as galaxies. This work would involve
smaller, prefiltered data and a combination of in situ analysis
techniques from our common tools framework.

Of course, improvements could be made to the algorithm
itself, such determining the ghost size automatically. We are
also considering moving more postprocessing tasks in situ,
such as connected component labeling, Minkowski function-
aks, and histogram summary statistics. We will also look
to tracking temporal evolution of connected components by
using the feature tree method of Chen et al. [23]. Another
use of the Voronoi tessellation that we are considering is to
augment the output of particle positions with the cell volume
or density at each site as an indication of the density of the
region surrounding each particle. Such information could
be used to guide structure detection, sampling, and other
density-based operations in the future.
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